7-6 Extra Practice Transformations of Exponential Functions

Write a function g(x) to represent the transformed graph.

- **1.** $f(x) = 2^x$ moves 3 units up $g(x) = 2^x + 3$
- 3. $f(x) = 5^x$ moves 2 units right $g(x) = 5^{(x-2)}$
- 5. $f(x) = 6^{x} + 7$ moves 2 units down $g(x) = 6^{x} + 5$
- 7. $f(x) = 4^x$ is compressed vertically by a factor of $\frac{1}{2}$ $g(x) = \frac{1}{2}(4^x)$
- 9. $f(x) = 2^x$ is compressed horizontally by a factor of 3 $g(x) = 2^{3x}$

Tell how the transformed function compares to the parent function.

- **11.** $f(x) = 6^x$; $g(x) = 6^x + 8$ translated up 8 units
- **13.** $f(x) = 3^x + 1$; $g(x) = 3^{2x} + 1$ compressed horizontally by a factor of 2
- **15.** $f(x) = 2.3^{x}$; $g(x) = -2.3^{x-1}$

reflected across the *x*-axis; translated 1 unit right

17. $f(x) = 5^x + 2$; $g(x) = 5^{-x} + 6$ reflected across the *y*-axis; translated 4 units up

19.
$$f(x) = 3^x + 1$$
; $g(x) = 2(3^x + 1)$

stretched vertically by a factor of 2

2. $f(x) = 8^x$ moves 1 unit down $g(x) = 8^x - 1$

- 4. $f(x) = 3^x$ moves 4 units left $g(x) = 3^{(x+4)}$
- 6. $f(x) = -2^{x} + 3$ moves 5 units right $g(x) = -2^{(x-5)} + 3$
- 8. $f(x) = 3^x$ is stretched vertically by a factor of 5 $g(x) = 5(3^x)$
- 10. $f(x) = 5^x$ is stretched horizontally by a factor of $\frac{1}{4}$ $g(x) = 5^{0.25x}$

12. $f(x) = 5^x$; $g(x) = -5^x$ reflected across the *x*-axis

- **14.** $f(x) = 4^x 3$; $g(x) = 4^{0.5x} 3$ stretched horizontally by a factor of **0.5**
- **16.** $f(x) = 2^x$; $g(x) = 2^{-x} + 1$

reflected across the *y*-axis; translated 1 unit up

18. $f(x) = 1.4^{x} - 1$; $g(x) = -1.4^{x} + 6$ reflected across the *x*-axis; translated 7 units up

20.
$$f(x) = -4x$$
; $g(x) = \frac{1}{3}(-4^x)$
compressed vertically by a factor of $\frac{1}{3}$